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 Recently, Educational and Psychological Measurement published a special issue on 

“reliability generalization,” (April 2000).  The issue contained both a critique and a defense of 

the procedure as well as three applications studies.  The authors of the critique and defense, as 

well as the applications, relied on classical test theory for their conceptualization of reliability 

and error variance.  They also, unfortunately, abbreviated their methods regarding the actual 

synthesis of reliability coefficients to the extent that the methodology remained ambiguous.  Not 

only was the statistical framework applied in the reliability generalization studies ambiguous, 

they appeared to be weak in their treatment of several standard issues facing the research 

synthesist.  Although references were made to the methods used in validity generalization as a 

parallel framework, several important issues were ignored. 

 This paper is offered to uncover some of the underlying strengths of research synthesis 

(meta-analysis) as an effort to provide a stronger framework for continued work in the synthesis 

of psychometric coefficients.  This paper is also a result of work completed through participation 

in SynRG (Synthesis Research Group at Michigan State University) under the direction of and 

with thoughtful comments from Betsy Becker.  I begin with several aspects of reliability theory 

that were downplayed in Thompson and Vacha-Haase’s defense of reliability generalization and 

Sawilowsky’s (2000) critique.  I briefly comment on each article in the recent special edition of 
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Educational and Psychological Measurement (Vol. 60, No. 2).  I then briefly describe a few 

critical methodological issues in meta-analysis that were apparently ignored in the recent 

applications of reliability generalization.  Finally, I present an IRT perspective to the concept of 

reliability generalization offered by Mark Reckase (personal communication, March 2000).  In 

part, the following discussion critically questions the validity of reliability generalization.  

Moreover, it presents a case for a more structured and principled approach to continued efforts in 

the synthesis of psychometric coefficients. 

 

Reliability, Revisited 

In the classical test theory framework, the observed score is the sum of two independent 

components: the true score and error score.  The error score is a random variable that may have 

associated with it any number of factors, including the physical measurement process itself, 

characteristics of the environment under which measurements were obtained, and temporal 

changes in any number of individual-based characteristics.  Lord and Novick (1968) suggested 

that the degree to which these factors are controlled and randomized determines different true 

scores and thus different error (residual) scores.  “For each definition of true score, of course, we 

have a different error score.  Just what is included in the error score depends entirely on the 

conditions under which measurements are made” (p. 39). 

Reliability has been conceived of differently in several frameworks based on the 

mathematical model used in the scoring and analysis of scores from educational and 

psychological instruments.  Traditionally, “the reliability of a test is defined as the squared 

correlation  between observed score and true score.  From the relation 2
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that the reliability of a test is a measure of the degree of true-score variation relative to 

observed-score variation” (Lord & Novick, 1968, p. 61).   

 This relationship is also commonly written as 2
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ρ −= .  It is conceivable that two 

estimates of reliability are equal where each is based on different levels of error variance with 

proportional changes in observed score variance (Reckase, personal communication, March 

2000).  Similarly, different estimates of reliability could result from changes in true score 

variance with no concomitant changes in error score variance.  In fact, under the IRT framework 

describe below, changes in “reliability” clearly result from changes in the ability or trait (theta) 

distribution.   

 

Focusing on the theoretical conceptualization of the reliability estimate as a correlation, 

Samejima (1977) argued that the resulting estimate of reliability not only depends on the test 

itself, but also on the specific group of examinees, as the case with any correlation.   

To give an extreme example, however refined the test may be, the reliability 
coefficient is zero if all examinees have exactly the same true score.  Conversely, 
it is easy to make a poorly constructed test look good by calculating the 
correlation coefficient for a group of examinees whose ability levels are 
substantially different from one another.  (p. 233) 
 

Because of this, generalizability is limited.  Similarly, the functional relationship between 

test length and reliability was illustrated in the Spearman Brown prophecy formula; 

however, not entirely prophetic.  The relationship between test length and reliability has 

been well documented.  Lord and Novick (1968) demonstrated that the reliability of a test 

of infinite length is unity and of zero length is zero.   
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 “The situation is substantially different in latent trait theory where the standard error of 

estimation does have an intrinsic meaning, since test information function is defined 

independently of any specific group of examinees” (Samejima, 1977, p. 234). 

 The limitations of the classical test theory conception of reliability have been debated for 

nearly 40 years.  These limitations, in part, were the driving force behind the efforts to develop 

strong test theory, including IRT.  Lord and Novick (1968) cautioned researchers early on 

regarding overuse or abuse of resulting reliability estimates.  “The reader should note that 

without further information, the reliability coefficient along is of little value for describing a test 

as a measuring instrument.  The reason is that a large reliability coefficient can often be obtained 

by administering the test to a significantly heterogeneous group of examinees” (p. 199).   

The recent edition of the Standards for Educational and Psychological Testing (AERA, 

APA, & NCME, 1999) reiterated this comment: “The reporting of reliability coefficients alone, 

with little detail regarding the methods used to estimate the coefficient, the nature of the group 

from which the data were derived, and the conditions under which the data were obtained 

constitutes inadequate documentation” (p. 31).  The Standards described the critical information 

necessary to interpret reliability information appropriately, including the identification of major 

sources of error, descriptive statistics regarding the size of errors, and where possible, 

generalizability information based on relevant dimensions of the measurement procedures such 

as forms, scorers, and administrations.  In addition, the examinee population from which the 

above descriptions were derived must be described, “as the data may accurately reflect what is 

true of one population but misrepresent what is true of another” (p. 27).   

 Measurement error is infrequently defined in a substantive way by researchers and, as 

argued by Schmidt and Hunter (1999), “ the processes that produce measurement error are not 
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mysterious” (p. 192).  Three substantive processes leading to measurement error that are 

important in psychological measurement include random response error, transient error, and 

specific factor error.  Different estimates of reliability assess different sources of error.  Schmidt 

and Hunter are particularly interested in estimating the magnitude of error for the purpose of 

control—the failure of researchers to control for the biases introduced in their research because 

of measurement error has slowed the accumulation of knowledge.  In their work in validity 

generalization and elsewhere, they have advocated the correction for biases due to measurement 

error, range restriction, and other sources (Hunter and Schmidt, handbook).  “It is not possible to 

have accurate empirical tests of theories and hypotheses unless the biases introduced into data by 

measurement error are controlled and correct for” (p. 183). 

While discussing issues regarding the nature of specific factor errors of measurement, 

Schmidt and Hunter (1999) presented the following example.  Suppose the literature contains 

several verbal ability measures that are not classically parallel, constructed at different times by 

different researchers.  We choose to define verbal ability as the common factor among these 

measures and administer five scales with the total combined score as the final observed score.  

The appropriate reliability of these scores could be estimated with coefficient alpha as though 

each scale were an item in a five-item instrument.  The result could be considered the 

generalizability coefficient as conceived of by Cronbach, Gleser, Nanda, & Rajaratnam (1972).  

They suggested that the results would “generalize to the population of all such non-parallel 

measures of verbal ability” (p. 196) and result in better theory construction with greater 

generality.   
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Reliability Generalization 

 Although the synthesis of reliability coefficients is not a new activity (see, for example, ), 

Vacha-Haase has brought the concept of reliability generalization to the forefront.  The issue has 

raised so much interest that Educational and Psychological Measurement has devoted space in a 

special issue to several papers on the topic.  In addition, an AERA mini-course was offered at the 

2000 annual meeting on the methodology involved in reliability generalization (after the 

completion of this paper).   

 

Meta-Analysis, Revisited 

 In their introduction to the Handbook of Research Synthesis, Cooper and Hedges (1994) 

defined research syntheses as attempts to “integrate empirical research for the purpose of 

creating generalizations” (p. 5).  This implies evaluating the limits and “modifiers” of resulting 

generalizations.  Three additional contributions of research syntheses include a critical analysis 

of the research involved, attempts to resolve conflicts in the literature, and identification of 

potential future research agendas. 

 Two common questions addressed by the research synthesist are: “How confident can we 

be that the findings can be generalized beyond a small subset of populations, settings, and 

procedures?” and “Does the research advance the theoretical understanding of a phenomenon?” 

(Hall, et al., 1994, p. 18).  Through a research synthesis, we can empirically evaluate the validity 

of generalizations by testing moderator variables believed to be associated with certain 

populations of subjects, settings, or administration procedures involved in primary studies. 
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 One issue often overlooked by the research synthesist regards the universe to which 

generalizations are made.  This addresses the issue related to fixed effects versus random effects 

inferences and statistical analyses.  Hedges (1994) adequately described the differences: 

In the fixed effects, or conditional, model, the universe to which generalizations 
are made consists of ensembles of studies identical to those in the study sample 
except for the particular people (or the primary sampling units) that appear in the 
studies.  Thus, the studies in the universe differ from those in the study sample 
only as a result of the sampling of people into the groups of the studies.  The only 
source of sampling error or uncertainty is therefore the variation resulting from 
the sampling of people into studies.  (p. 30). 
 
In the random effects, or unconditional, model, the study sample is presumed to 
be literally a sample from a hypothetical collection (or population) of studies.  
The universe to which generalizations are made consists of a population of studies 
from which the study sample is drawn.  Studies in this universe differ from those 
in the study sample along two dimensions.  First, the studies differ from one 
another in study characteristics and in effect size parameter.  …Second, in 
addition to differences in study characteristics and effect size parameters, the 
studies in the study sample also differ from those in the universe as a consequence 
of sampling of people into the groups of the study.  (p. 31). 
 

The argument to support the use of random effects analysis suggests that the studies we observe 

in the literature are, more or less, accidental or due to chance as much as anything.  The question, 

as clarified by Hedges (1994), is not “What is true about these studies?” but “What is true about 

studies like these that could have been done?”  Such generalizations can be handled through 

statistical means by incorporating the additional uncertainty due to the inference to studies not 

identical to those in the sample.  Upon identification of the appropriate universe of 

generalization, the synthesis can proceed.  However, there are additional considerations. 

 Hedges (1994) also suggested that all of the available methods commonly used in 

statistical analysis of study results assume two conditions.  The statistic or estimated effect (or 

appropriate transformation) is normally distributed in large-samples with a mean that 

approximates the parameter of interest.  In addition, the standard error of the estimated effect is a 
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continuous function of its study sample size, the magnitude of the effect, and potentially other 

factors that can be estimated from the resulting study data.  Once these considerations have been 

addressed, results from studies can be combined. 

 If studies were actually identical replications of an original study, combining results 

could be a relatively straightforward exercise.  In reality, studies differ in many ways, some of 

which were described above, but also in terms of location, timing, and sample size.  To deal with 

these differences, the synthesist has available a number of weighting schemes based on three 

assumptions: 

(a) Theory or evidence suggests that studies with some characteristics are more 
accurate or less biased with respect to the desired inference than studies with 
other characteristics, (b) the nature and direction of that bias can be estimated 
prior to combining, and (c) appropriate weights to compensate for the bias can be 
constructed and justified.  (Shadish & Haddock, 1994, p. 263) 
 

 Based on the notation used in the Handbook of Research Synthesis (see Raudenbush, 

1994), in a random effects model, θi (the population parameter of interest) is not fixed, but 

random with its own distribution.  Total variability of an observed study estimate includes both 

conditional variation, vi, of the estimate around each population θi and random variation  of 

the θ

2
θσ

i around the mean population parameter.  Estimation of the random variance component 

(the between-studies variance) is no easy matter.  Various estimation procedures result in 

different estimates with important consequences (see Raudenbush, 1994).  In this context, the 

weights, wi, that minimize the variance of the estimated mean population parameter •T  are 

inversely proportional to the variance, where *2
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.  Uncertainty, when 

considering sample studies to be representative of a larger universe, comes from the fact that 
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study contexts, treatments, and administration procedures differ in many ways that potentially 

impact results. 

 Threats to valid inferences from such a synthesis remain.  Among those described by 

Raudenbush (1994) are uncertainty about the random effects variance component, the tenability 

of the assumption that the random effects are normally distributed with constant variance, model 

misspecification, and multiple effects from single studies resulting in dependent data.  None of 

the reliability generalization studies reviewed above addressed these issues. 

 

An IRT Perspective 

 Item response theory (IRT) is a general statistical theory that relates item and test 

performance to abilities or traits measured by the items in a test.  A common mathematical form 

of this relationship is a logistic model that links item performance to an unobservable ability or 

trait level.  Pi (θ) is the probability of a correct response to item i as a function of ability (θ, 

theta).  In a more general sense, in noncognitive measures, this corresponds to the probability of 

a certain item response given the individual’s trait level.  The resulting graph of the relationship 

between probability of an item response and trait level is the item characteristic curve (ICC).  

The sum of the ICCs for a given test constitute the test characteristic function, used to predict 

scores at given trait levels.  So for a given set of items, an individual’s expected score at a given 

trait level is their true score.  When the mathematical model expressing these probabilities fits 

the data, the item and person parameters are invariant or sample independent.   

 A useful contribution of IRT is the specification of the item information function, which 

contains the value of the item to the assessment of the trait.  The test information function, I(θ), 

is the sum of each item information function for a given instrument and provides an estimate of 
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the trait estimation error.  A standard error can be obtained for each estimated trait level, , 

where 

θ̂

)ˆ(
1)ˆ(
θ

θ
I

SE = .  From this we can see that smaller errors of estimation result from those 

trait levels where the test provides the most information.  For a more thorough comparison of 

IRT and classical test theory, see Hambleton and Jones (1992). 

The IRT analogue to the classical test theory standard error can be conceived of as the 

error variance for a given theta (trait level) integrated over the theta distribution: 

( ) θθσσ θε dge ∫= 22 , where )(
12

θ
σ θε I

= .  The information function is fixed by the items 

from the instrument; it is the sum of each item information function for a given instrument.  So 

to obtain a different estimate of the standard error, we would need a different theta distribution—

a sample with a different trait distribution. 

In this framework, changes in  (error variance) or reliability is indicative of a change 

in the theta distribution.  In IRT, error variance or reliability is based on the fixed calibration 

settings so that the error term is fixed given the items on the test, the setting, etc. 

2
eσ

 Citing Lord and Novick (1968), Samejima argued that  

unlike classical test theory, latent trait theory provides us with the standard error 
of estimation as a measure independent of any group of examinees, and given 
locally, or as a function of ability θ.  For this reason, we can consider this an 
intrinsic property of the test itself, as long as the populations of our interest 
belong to the complete latent space. (p. 237-238) 
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